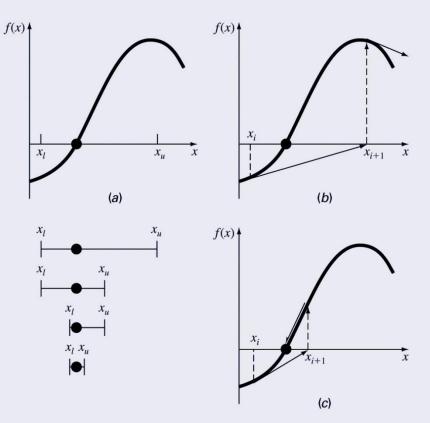
Chapter Objectives

- Recognizing the difference between bracketing and open methods for root location.
- Understanding the fixed-point iteration method and how you can evaluate its convergence characteristics.
- Knowing how to solve a roots problem with the Newton-Raphson method and appreciating the concept of quadratic convergence.
- Knowing how to implement both the secant and the modified secant methods.
- Knowing how to use MATLAB's fzero function to estimate roots.
- Learning how to manipulate and determine the roots of polynomials with MATLAB.

Open Methods

- Open methods differ from bracketing methods, in that open methods require only a single starting value or two starting values that do not necessarily bracket a root.
- Open methods may diverge as the computation progresses, but when they do converge, they usually do so much faster than bracketing methods.

Graphical Comparison of Methods



- a) Bracketing method
- b) Diverging open method
- c) Converging open method note speed!

Simple Fixed-Point Iteration

- Rearrange the function f(x)=0 so that x is on the left-hand side of the equation: x=g(x)
- Use the new function g to predict a new value of x that is, x_{i+1}=g(x_i)
- The approximate error is given by:

$$\mathcal{E}_{a} = \left| \frac{x_{i+1} - x_{i}}{x_{i+1}} \right| 100\%$$

Example

- Solve $f(x) = e^{-x} x$
- Re-write as x=g(x) by isolating x (example: x=e^{-x})
- Start with an initial guess (here, 0)

J	f(x)	$=e^{-x}-x$
))		Root
))		
j	f(x)	(<i>a</i>)
	\square	$f_1(x) = x$
		$f_2(x) = e^{-x}$
		Root

(b)

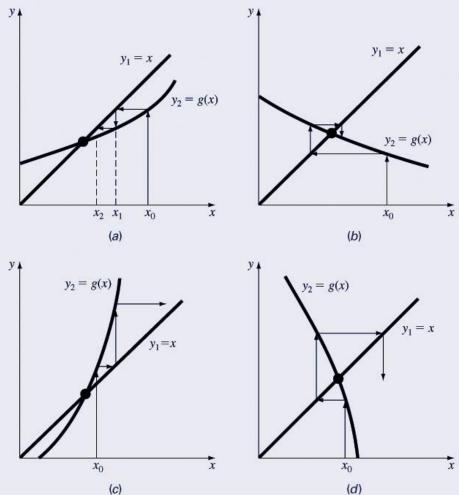
C(...)

i	x _i	ε _a %	ε _t %	$ \varepsilon_t _i/ \varepsilon_t _{i-1}$
0	0.0000		100.000	
1	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533

Continue until some tolerance
is reached

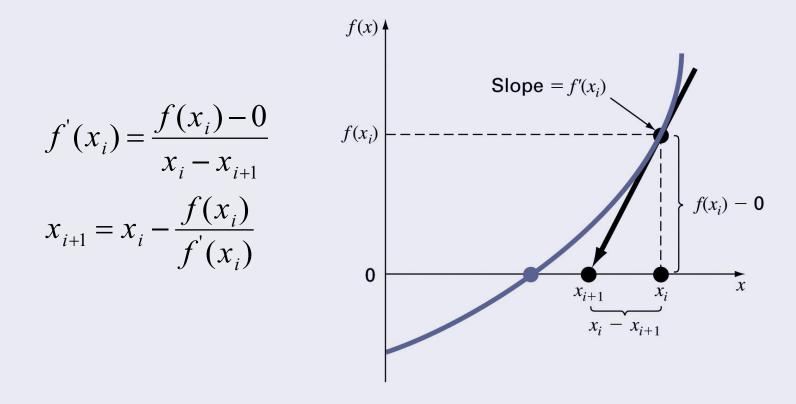
Convergence

- Convergence of the simple fixed-point iteration method requires that the derivative of g(x) near the root has a magnitude less than 1.
 - a) Convergent, $0 \le g' \le 1$
 - b) Convergent, $-1 < g' \le 0$
 - c) Divergent, g'>1
 - d) Divergent, g'<-1



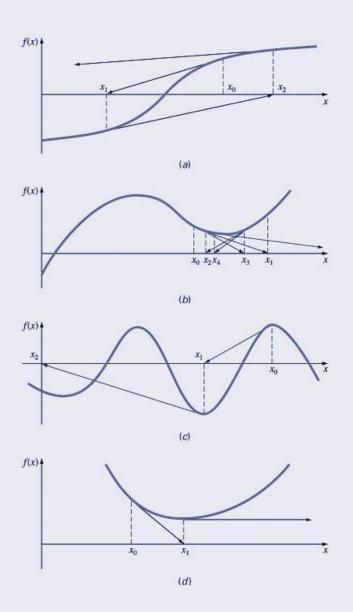
Newton-Raphson Method

Based on forming the tangent line to the f(x) curve at some guess x, then following the tangent line to where it crosses the x-axis.



Pros and Cons

- Pro: The error of the i+1th iteration is roughly proportional to the square of the error of the ith iteration - this is called *quadratic convergence*
- Con: Some functions show slow or poor convergence



Secant Methods

- A potential problem in implementing the Newton-Raphson method is the evaluation of the derivative - there are certain functions whose derivatives may be difficult or inconvenient to evaluate.
- For these cases, the derivative can be approximated by a backward finite divided difference:

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Secant Methods (cont)

 Substitution of this approximation for the derivative to the Newton-Raphson method equation gives:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

 Note - this method requires *two* initial estimates of *x* but does *not* require an analytical expression of the derivative.

MATLAB's fzero Function

- MATLAB's fzero provides the best qualities of both bracketing methods and open methods.
 - Using an initial guess:
 - x = fzero(*function*, x0)
 - [*x*, *fx*] = fzero(*function*, *x0*)
 - *function* is a function handle to the function being evaluated
 - *x0* is the initial guess
 - x is the location of the root
 - fx is the function evaluated at that root
 - Using an initial bracket:
 - x = fzero(function, [x0 x1])
 - [x, fx] = fzero(function, [x0 x1])
 - As above, except x0 and x1 are guesses that must bracket a sign change

fzero Options

- Options may be passed to fzero as a third input argument - the options are a data structure created by the optimset command
- options = optimset(' par_1 ', val_1 , ' par_2 ', val_2 ,...)
 - par_n is the name of the parameter to be set
 - *val_n* is the value to which to set that parameter
 - The parameters commonly used with fzero are:
 - display: when set to 'iter' displays a detailed record of all the iterations
 - tolx: A positive scalar that sets a termination tolerance on x.

fzero Example

- options = optimset('display', 'iter');
 - Sets options to display each iteration of root finding process
- [x, fx] = fzero(@(x) x^10-1, 0.5, options)
 - Uses fzero to find roots of $f(x)=x^{10}-1$ starting with an initial guess of x=0.5.
- MATLAB reports x=1, fx=0 after 35 function counts

Polynomials

- MATLAB has a built in program called roots to determine all the roots of a polynomial - including imaginary and complex ones.
- x = roots(c)
 - x is a column vector containing the roots
 - c is a row vector containing the polynomial coefficients
- Example:
 - Find the roots of $f(x)=x^5-3.5x^4+2.75x^3+2.125x^2-3.875x+1.25$
 - -x = roots([1 3.5 2.75 2.125 3.875 1.25])

Polynomials (cont)

- MATLAB's poly function can be used to determine polynomial coefficients if roots are given:
 - b = poly([0.5 1])
 - Finds f(x) where f(x) = 0 for x=0.5 and x=-1
 - MATLAB reports b = [1.000 0.5000 -0.5000]
 - This corresponds to $f(x)=x^2+0.5x-0.5$
- MATLAB's polyval function can evaluate a polynomial at one or more points:
 - a = [1 -3.5 2.75 2.125 -3.875 1.25];
 - If used as coefficients of a polynomial, this corresponds to $f(x)=x^5-3.5x^4+2.75x^3+2.125x^2-3.875x+1.25$
 - polyval(a, 1)
 - This calculates *f*(1), which MATLAB reports as -0.2500